小而美的算法技巧:差分数组
Info
已完成网站教程、网站习题、配套插件中所有多语言代码的校准,解决了之前 chatGPT 翻译可能出错的问题~
读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:
LeetCode | Difficulty |
---|---|
1094. Car Pooling | 🟠 |
1109. Corporate Flight Bookings | 🟠 |
370. Range Addition🔒 | 🟠 |
Prerequisites
Before reading this article, you need to learn:
The Prefix Sum Technique is mainly used in scenarios where the original array is not modified, but frequent queries of the cumulative sum of a certain range are needed. The core code is as follows:
class PrefixSum {
// prefix sum array
private int[] preSum;
// input an array to construct the prefix sum
public PrefixSum(int[] nums) {
// preSum[0] = 0, convenient for calculating cumulative sum
preSum = new int[nums.length + 1];
// calculate the cumulative sum of nums
for (int i = 1; i < preSum.length; i++) {
preSum[i] = preSum[i - 1] + nums[i - 1];
}
}
// query the cumulative sum of the closed interval [left, right]
public int sumRange(int left, int right) {
return preSum[right + 1] - preSum[left];
}
}
class PrefixSum {
private:
vector<int> prefix;
public:
// prefix sum array
PrefixSum(vector<int>& nums) {
prefix = vector<int>(nums.size() + 1);
// calculate the cumulative sum of nums
for (int i = 1; i < nums.size() + 1; i++) {
prefix[i] = prefix[i - 1] + nums[i - 1];
}
}
// query the cumulative sum of the closed interval [i, j]
int query(int i, int j) {
return prefix[j + 1] - prefix[i];
}
};
class PrefixSum:
# Prefix sum array
def __init__(self, nums: List[int]):
self.prefix = [0] * (len(nums) + 1)
# Calculate the cumulative sum of nums
for i in range(1, len(self.prefix)):
self.prefix[i] = self.prefix[i - 1] + nums[i - 1]
# Query the cumulative sum of the closed interval [i, j]
def query(self, i: int, j: int) -> int:
return self.prefix[j + 1] - self.prefix[i]
type PrefixSum struct {
// prefix sum array
prefix []int
}
// input an array, construct the prefix sum
func Constructor(nums []int) *PrefixSum {
prefix := make([]int, len(nums)+1)
// calculate the cumulative sum of nums
for i := 1; i < len(prefix); i++ {
prefix[i] = prefix[i-1] + nums[i-1]
}
return &PrefixSum{prefix}
}
// query the cumulative sum of the closed interval [i, j]
func (ps *PrefixSum) Query(i, j int) int {
return ps.prefix[j+1] - ps.prefix[i]
}
class PrefixSum {
constructor(nums) {
// prefix sum array
this.prefix = new Array(nums.length + 1);
// calculate the cumulative sum of nums
for (let i = 1; i < this.prefix.length; i++) {
this.prefix[i] = this.prefix[i - 1] + nums[i - 1];
}
}
// query the cumulative sum of the closed interval [i, j]
query(i, j) {
return this.prefix[j + 1] - this.prefix[i];
}
}
preSum[i]
represents the cumulative sum of all elements in nums[0..i-1]
. If we want to find the cumulative sum of the interval nums[i..j]
, we can simply calculate preSum[j+1] - preSum[i]
without needing to traverse the entire interval.
This article introduces an algorithm technique very similar to the prefix sum concept, called the "difference array". The main use case for the difference array is when you frequently need to increment or decrement elements in a specific interval of the original array.
For example, given an array nums
, you might be asked to increment all elements in the interval nums[2..6]
by 1, then decrement all elements in nums[3..9]
by 3, then increment all elements in nums[0..4]
by 2, and so on.
After a series of operations, you are asked to determine the final values in the nums
array.
The conventional approach is straightforward: if you need to add val
to the interval nums[i..j]
, you simply use a for loop to add val
to each element. However, this approach has a time complexity of O(N), which can be very inefficient given the frequent modifications to nums
.
This is where the difference array technique comes in. Similar to how we construct the preSum
array with the prefix sum technique, we first construct a diff
difference array for the nums
array. diff[i]
is the difference between nums[i]
and nums[i-1]
:
int[] diff = new int[nums.length];
// construct the difference array
diff[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
diff[i] = nums[i] - nums[i - 1];
}
int diff[nums.size()];
// construct the difference array
diff[0] = nums[0];
for (int i = 1; i < nums.size(); i++) {
diff[i] = nums[i] - nums[i - 1];
}
# Here is the corrected code with the appropriate translations:
diff = [0] * len(nums)
# Construct the difference array
diff[0] = nums[0]
for i in range(1, len(nums)):
diff[i] = nums[i] - nums[i - 1]
// Construct the difference array
diff := make([]int, len(nums))
diff[0] = nums[0]
for i := 1; i < len(nums); i++ {
diff[i] = nums[i] - nums[i-1]
}
var diff = new Array(nums.length);
// construct the difference array
diff[0] = nums[0];
for (var i = 1; i < nums.length; i++) {
diff[i] = nums[i] - nums[i - 1];
}
Using this diff
difference array, you can reconstruct the original array nums
. The code logic is as follows:
int[] res = new int[diff.length];
// construct the result array based on the difference array
res[0] = diff[0];
for (int i = 1; i < diff.length; i++) {
res[i] = res[i - 1] + diff[i];
}
int res[diff.size()];
// construct the result array based on the difference array
res[0] = diff[0];
for (int i = 1; i < diff.size(); i++) {
res[i] = res[i - 1] + diff[i];
}
res = [0] * len(diff)
# construct the result array based on the difference array
res[0] = diff[0]
for i in range(1, len(diff)):
res[i] = res[i - 1] + diff[i]
res := make([]int, len(diff))
// construct the result array based on the difference array
res[0] = diff[0]
for i := 1; i < len(diff); i++ {
res[i] = res[i-1] + diff[i]
}
var res = new Array(diff.length);
// construct the result array based on the difference array
res[0] = diff[0];
for (var i = 1; i < diff.length; i++) {
res[i] = res[i - 1] + diff[i];
}
By constructing the difference array diff
, you can quickly perform range increment and decrement operations. If you want to add 3 to all elements in the range nums[i..j]
, you only need to set diff[i] += 3
and then diff[j+1] -= 3
:
The principle is simple. Recall the process of deriving the nums
array from the diff
array. diff[i] += 3
means adding 3 to all elements in nums[i..]
, and then diff[j+1] -= 3
means subtracting 3 from all elements in nums[j+1..].
Combined, this effectively adds 3 to all elements in nums[i..j]
, right?
By spending O(1) time modifying the diff
array, you are essentially modifying the entire range of nums
. After making multiple modifications to diff
, you can derive the modified nums
array by reversing the diff
array.
Now, let's abstract the difference array into a class that includes the increment
method and the result
method:
// Difference Array Utility Class
class Difference {
// difference array
private int[] diff;
// input an initial array, range operations will be performed on this array
public Difference(int[] nums) {
assert nums.length > 0;
diff = new int[nums.length];
// construct the difference array based on the initial array
diff[0] = nums[0];
for (int i = 1; i < nums.length; i++) {
diff[i] = nums[i] - nums[i - 1];
}
}
// increment the closed interval [i, j] by val (can be negative)
public void increment(int i, int j, int val) {
diff[i] += val;
if (j + 1 < diff.length) {
diff[j + 1] -= val;
}
}
// return the result array
public int[] result() {
int[] res = new int[diff.length];
// construct the result array based on the difference array
res[0] = diff[0];
for (int i = 1; i < diff.length; i++) {
res[i] = res[i - 1] + diff[i];
}
return res;
}
}
// Difference Array Tool Class
class Difference {
// difference array
private:
vector<int> diff;
// input an initial array, range operations will be performed on this array
public:
Difference(vector<int>& nums) {
diff = vector<int>(nums.size());
// construct the difference array based on the initial array
diff[0] = nums[0];
for (int i = 1; i < nums.size(); i++) {
diff[i] = nums[i] - nums[i - 1];
}
}
// add val (can be negative) to the closed interval [i, j]
void increment(int i, int j, int val) {
diff[i] += val;
if (j + 1 < diff.size()) {
diff[j + 1] -= val;
}
}
// return the result array
vector<int> result() {
vector<int> res(diff.size());
// construct the result array based on the difference array
res[0] = diff[0];
for (int i = 1; i < diff.size(); i++) {
res[i] = res[i - 1] + diff[i];
}
return res;
}
};
# Difference Array Tool Class
class Difference:
# difference array
def __init__(self, nums: List[int]):
assert len(nums) > 0
self.diff = [0] * len(nums)
# construct the difference array based on the initial array
self.diff[0] = nums[0]
for i in range(1, len(nums)):
self.diff[i] = nums[i] - nums[i - 1]
# increment the closed interval [i, j] by val (can be negative)
def increment(self, i: int, j: int, val: int) -> None:
self.diff[i] += val
if j + 1 < len(self.diff):
self.diff[j + 1] -= val
# return the result array
def result(self) -> List[int]:
res = [0] * len(self.diff)
# construct the result array based on the difference array
res[0] = self.diff[0]
for i in range(1, len(self.diff)):
res[i] = res[i - 1] + self.diff[i]
return res
// Difference array utility class
type Difference struct {
// difference array
diff []int
}
// Input an initial array, interval operations will be performed on this array
func NewDifference(nums []int) *Difference {
diff := make([]int, len(nums))
// construct the difference array based on the initial array
diff[0] = nums[0]
for i := 1; i < len(nums); i++ {
diff[i] = nums[i] - nums[i-1]
}
return &Difference{diff: diff}
}
// Add val (can be negative) to the closed interval [i, j]
func (d *Difference) Increment(i, j, val int) {
d.diff[i] += val
if j+1 < len(d.diff) {
d.diff[j+1] -= val
}
}
// Return the result array
func (d *Difference) Result() []int {
res := make([]int, len(d.diff))
// construct the result array based on the difference array
res[0] = d.diff[0]
for i := 1; i < len(d.diff); i++ {
res[i] = res[i-1] + d.diff[i]
}
return res
}
class Difference {
constructor(nums) {
// difference array
this.diff = new Array(nums.length);
// construct the difference array based on the initial array
this.diff[0] = nums[0];
for (let i = 1; i < nums.length; i++) {
this.diff[i] = nums[i] - nums[i - 1];
}
}
// increase the closed interval [i, j] by val (can be negative)
increment(i, j, val) {
this.diff[i] += val;
if (j + 1 < this.diff.length) {
this.diff[j + 1] -= val;
}
}
// return the result array
result() {
let res = new Array(this.diff.length);
// construct the result array based on the difference array
res[0] = this.diff[0];
for (let i = 1; i < this.diff.length; i++) {
res[i] = res[i - 1] + this.diff[i];
}
return res;
}
}
Pay attention to the if statement in the increment
method:
void increment(int i, int j, int val) {
diff[i] += val;
if (j + 1 < diff.length) {
diff[j + 1] -= val;
}
}
void increment(int i, int j, int val) {
diff[i] += val;
if (j + 1 < sizeof(diff)/sizeof(int)) {
diff[j + 1] -= val;
}
}
def increment(i: int, j: int, val: int) -> None:
diff[i] += val
if j + 1 < len(diff):
diff[j + 1] -= val
func increment(i int, j int, val int) {
diff[i] += val
if j+1 < len(diff) {
diff[j+1] -= val
}
}
var increment = function(i, j, val) {
diff[i] += val;
if (j + 1 < diff.length) {
diff[j + 1] -= val;
}
};
When j+1 >= diff.length
, it means that the entire array starting from nums[i]
will be modified. Therefore, there is no need to subtract val
from the diff
array anymore.
Algorithm Practice
Firstly, LeetCode problem #370 "Range Addition" directly tests the difference array technique:
370. Range Addition | 力扣 | LeetCode |
You are given an integer length
and an array updates
where updates[i] = [startIdxi, endIdxi, inci]
.
You have an array arr
of length length
with all zeros, and you have some operation to apply on arr
. In the ith
operation, you should increment all the elements arr[startIdxi], arr[startIdxi + 1], ..., arr[endIdxi]
by inci
.
Return arr
after applying all the updates
.
Example 1:
Input: length = 5, updates = [[1,3,2],[2,4,3],[0,2,-2]] Output: [-2,0,3,5,3]
Example 2:
Input: length = 10, updates = [[2,4,6],[5,6,8],[1,9,-4]] Output: [0,-4,2,2,2,4,4,-4,-4,-4]
Constraints:
1 <= length <= 105
0 <= updates.length <= 104
0 <= startIdxi <= endIdxi < length
-1000 <= inci <= 1000
We can solve this problem by reusing the Difference
class we implemented earlier:
class Solution {
public int[] getModifiedArray(int length, int[][] updates) {
// initialize nums with all zeros
int[] nums = new int[length];
// construct the difference array solution
Difference df = new Difference(nums);
for (int[] update : updates) {
int i = update[0];
int j = update[1];
int val = update[2];
df.increment(i, j, val);
}
return df.result();
}
}
class Solution {
public:
vector<int> getModifiedArray(int length, vector<vector<int>>& updates) {
// initialize nums with all zeros
vector<int> nums(length, 0);
// construct the difference decomposition
Difference df(nums);
for (auto& update : updates) {
int i = update[0];
int j = update[1];
int val = update[2];
df.increment(i, j, val);
}
return df.result();
}
};
class Solution:
def getModifiedArray(self, length: int, updates: List[List[int]]) -> List[int]:
# initialize nums to all zeros
nums = [0] * length
# construct the difference solution
df = Difference(nums)
for update in updates:
i = update[0]
j = update[1]
val = update[2]
df.increment(i, j, val)
return df.result()
func getModifiedArray(length int, updates [][]int) []int {
// initialize nums with all zeros
nums := make([]int, length)
// construct the difference array solution
df := NewDifference(nums)
for _, update := range updates {
i := update[0]
j := update[1]
val := update[2]
df.Increment(i, j, val)
}
return df.Result()
}
var getModifiedArray = function(length, updates) {
// initialize nums to all zeros
let nums = new Array(length).fill(0)
// construct the difference solution
let df = new Difference(nums)
for(let update of updates) {
let i = update[0]
let j = update[1]
let val = update[2]
df.increment(i, j, val)
}
return df.result()
}
Of course, real algorithm problems may require us to make associations and abstractions from the question, and it won't be so straightforward to see that the difference array technique is needed. Let's take a look at LeetCode problem #1109 "Corporate Flight Bookings":
1109. Corporate Flight Bookings | 力扣 | LeetCode |
There are n
flights that are labeled from 1
to n
.
You are given an array of flight bookings bookings
, where bookings[i] = [firsti, lasti, seatsi]
represents a booking for flights firsti
through lasti
(inclusive) with seatsi
seats reserved for each flight in the range.
Return an array answer
of length n
, where answer[i]
is the total number of seats reserved for flight i
.
Example 1:
Input: bookings = [[1,2,10],[2,3,20],[2,5,25]], n = 5 Output: [10,55,45,25,25] Explanation: Flight labels: 1 2 3 4 5 Booking 1 reserved: 10 10 Booking 2 reserved: 20 20 Booking 3 reserved: 25 25 25 25 Total seats: 10 55 45 25 25 Hence, answer = [10,55,45,25,25]
Example 2:
Input: bookings = [[1,2,10],[2,2,15]], n = 2 Output: [10,25] Explanation: Flight labels: 1 2 Booking 1 reserved: 10 10 Booking 2 reserved: 15 Total seats: 10 25 Hence, answer = [10,25]
Constraints:
1 <= n <= 2 * 104
1 <= bookings.length <= 2 * 104
bookings[i].length == 3
1 <= firsti <= lasti <= n
1 <= seatsi <= 104
The function signature is as follows:
int[] corpFlightBookings(int[][] bookings, int n)
vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n)
def corpFlightBookings(bookings: List[List[int]], n: int) -> List[int]:
func corpFlightBookings(bookings [][]int, n int) []int
var corpFlightBookings = function(bookings, n) {};
This problem seems to be going around in circles, but it's actually a difference array problem. Let me translate it for you:
You are given an input array nums
of length n
, where all elements are 0. Additionally, you are given a bookings
array containing several triplets (i, j, k)
. Each triplet means you need to add k
to all elements in the closed interval [i-1, j-1]
of the nums
array. Your task is to return the final nums
array.
注
Since the problem states that n
starts counting from 1, while array indices start from 0, for the input triplet (i, j, k)
, the corresponding array interval should be [i-1, j-1]
.
Looking at it this way, isn't it a standard difference array problem? We can directly reuse the class we just wrote:
class Solution {
public int[] corpFlightBookings(int[][] bookings, int n) {
// initialize nums to all 0's
int[] nums = new int[n];
// construct the difference solution
Difference df = new Difference(nums);
for (int[] booking : bookings) {
// note that converting to array index should minus one
int i = booking[0] - 1;
int j = booking[1] - 1;
int val = booking[2];
// increase the range nums[i..j] by val
df.increment(i, j, val);
}
// return the final result array
return df.result();
}
}
class Solution {
public:
vector<int> corpFlightBookings(vector<vector<int>>& bookings, int n) {
// nums initialized to all zeros
vector<int> nums(n);
// construct the difference solution
Difference df(nums);
for (auto& booking : bookings) {
// note that converting to array index should subtract one
int i = booking[0] - 1;
int j = booking[1] - 1;
int val = booking[2];
// increment the range nums[i..j] by val
df.increment(i, j, val);
}
// return the final result array
return df.result();
}
};
class Solution:
def corpFlightBookings(self, bookings: List[List[int]], n: int) -> List[int]:
# initialize nums with all zeros
nums = [0] * n
# construct the difference solution
df = Difference(nums)
for booking in bookings:
# note that converting to array index should minus one
i = booking[0] - 1
j = booking[1] - 1
val = booking[2]
# increase the interval nums[i..j] by val
df.increment(i, j, val)
# return the final result array
return df.result()
func corpFlightBookings(bookings [][]int, n int) []int {
// initialize nums to all 0
nums := make([]int, n)
// construct the difference solution
df := NewDifference(nums)
for _, booking := range bookings {
// note that converting to array index should minus one
i := booking[0] - 1
j := booking[1] - 1
val := booking[2]
// increment the section nums[i..j] by val
df.Increment(i, j, val)
}
// return the final result array
return df.Result()
}
var corpFlightBookings = function(bookings, n) {
// initialize nums to all zeros
let nums = Array(n).fill(0);
// construct the difference solution
let df = new Difference(nums);
bookings.forEach(booking => {
// note that converting to array index should subtract one
let i = booking[0] - 1;
let j = booking[1] - 1;
let val = booking[2];
// increment the range nums[i..j] by val
df.increment(i, j, val);
})
// return the final result array
return df.result();
};
This problem is solved.
There is another similar problem, which is LeetCode problem #1094 "Car Pooling". Here's a brief description of the problem:
You are a bus driver, and your bus has a maximum capacity of capacity
. The bus route includes several stops. You are given a list of passenger trips int[][] trips
, where trips[i] = [num, start, end]
indicates that num
passengers will board at stop start
and alight at stop end
. Your task is to determine if you can transport all passengers in one trip without exceeding the maximum capacity capacity
.
The function signature is as follows:
boolean carPooling(int[][] trips, int capacity);
bool carPooling(vector<vector<int>>& trips, int capacity);
def carPooling(trips: List[List[int]], capacity: int) -> bool:
func carPooling(trips [][]int, capacity int) bool {}
var carPooling = function(trips, capacity) {
};
For example, given the input:
trips = [[2,1,5],[3,3,7]], capacity = 4
This cannot be completed in one trip because trips[1]
can only accommodate 2 passengers at most; otherwise, the vehicle will be overloaded.
You might already be thinking of the difference array technique: trips[i]
represents a set of range operations, where passengers boarding and alighting are equivalent to range additions and subtractions in an array; as long as all elements in the resulting array are less than capacity
, it means all passengers can be transported without overloading.
The question is, what should be the length of the difference array (the number of stations)? The problem does not directly provide this, but it gives the range of data values:
0 <= trips[i][1] < trips[i][2] <= 1000
Station numbers start from 0 and go up to 1000, meaning there can be a maximum of 1001 stations. Therefore, we can directly set the length of our difference array to 1001, so the indices can cover all station numbers:
class Solution {
public boolean carPooling(int[][] trips, int capacity) {
// there are at most 1001 stations
int[] nums = new int[1001];
// construct the difference array solution
Difference df = new Difference(nums);
for (int[] trip : trips) {
// number of passengers
int val = trip[0];
// passengers get on at station trip[1]
int i = trip[1];
// passengers have got off at station trip[2],
// that is, the interval for passengers on the bus is [trip[1], trip[2] - 1]
int j = trip[2] - 1;
// perform the interval operation
df.increment(i, j, val);
}
int[] res = df.result();
// the bus should never be overloaded throughout the journey
for (int i = 0; i < res.length; i++) {
if (capacity < res[i]) {
return false;
}
}
return true;
}
}
class Solution {
public:
bool carPooling(vector<vector<int>>& trips, int capacity) {
// there are at most 1001 stations
vector<int> nums(1001);
// construct the difference solution
Difference df(nums);
for (vector<int> trip : trips) {
// number of passengers
int val = trip[0];
// passengers get on at station trip[1]
int i = trip[1];
// passengers have got off at station trip[2],
// i.e., the interval for passengers on board is [trip[1], trip[2] - 1]
int j = trip[2] - 1;
// perform interval operation
df.increment(i, j, val);
}
vector<int> res = df.result();
// the bus should never be overloaded throughout
for (int i = 0; i < res.size(); i++) {
if (capacity < res[i]) {
return false;
}
}
return true;
}
};
class Solution:
def carPooling(self, trips, capacity):
# There are at most 1001 stations
nums = [0] * 1001
# Construct the difference array method
df = [0] * len(nums)
for trip in trips:
# Number of passengers
val = trip[0]
# Passengers board at station trip[1]
i = trip[1]
# Passengers get off at station trip[2],
# meaning passengers are on the car from [trip[1], trip[2] - 1]
j = trip[2] - 1
# Perform interval operations
df[i] += val
if j + 1 < len(df):
df[j + 1] -= val
for i in range(1, len(df)):
df[i] += df[i - 1]
# The bus should never be overloaded
for i in range(len(df)):
if capacity < df[i]:
return False
return True
func carPooling(trips [][]int, capacity int) bool {
// there are at most 1001 stations
nums := make([]int, 1001)
// construct the difference solution
df := NewDifference(nums)
for _, trip := range trips {
// number of passengers
val := trip[0]
// passengers get on at station trip[1]
i := trip[1]
// passengers have got off at station trip[2],
j := trip[2] - 1
// that is, the interval for passengers on the bus is [trip[1], trip[2] - 1]
// perform interval operation
df.Increment(i, j, val)
}
res := df.Result()
// the bus should never be overloaded from start to finish
for i := 0; i < len(res); i++ {
if capacity < res[i] {
return false
}
}
return true
}
var carPooling = function(trips, capacity) {
// there are at most 1001 stations
var nums = new Array(1001).fill(0);
// construct the difference solution
var df = new Difference(nums);
for (var trip of trips) {
// number of passengers
var val = trip[0];
// passengers get on at station trip[1]
var i = trip[1];
// passengers have got off at station trip[2],
var j = trip[2] - 1;
// i.e., the interval for passengers on board is [trip[1], trip[2] - 1]
// perform interval operation
df.increment(i, j, val);
}
var res = df.result();
// the bus should never be overloaded from start to finish
for (var i = 0; i < res.length; i++) {
if (capacity < res[i]) {
return false;
}
}
return true;
};
With this, the problem is also solved.
Both difference arrays and prefix sum arrays are common and clever algorithmic techniques, each suitable for different scenarios. They are easy for those who understand them, but challenging for those who don't. So, have you learned how to use difference arrays?