二叉搜索树心法(基操篇)
Info
已完成网站教程、网站习题、配套插件中所有多语言代码的校准,解决了之前 chatGPT 翻译可能出错的问题~
读完本文,你不仅学会了算法套路,还可以顺便解决如下题目:
LeetCode | Difficulty |
---|---|
450. Delete Node in a BST | 🟠 |
700. Search in a Binary Search Tree | 🟢 |
701. Insert into a Binary Search Tree | 🟠 |
98. Validate Binary Search Tree | 🟠 |
Prerequisites
Before reading this article, you need to first learn:
In our previous article Learning Binary Search Trees with Dong Ge (Features), we introduced the basic features of BST and solved some problems using the "in-order traversal is sorted" property of binary search trees. In this article, we will implement the basic operations of BST: checking the validity of a BST, inserting, deleting, and searching. Among these, "deleting" and "checking validity" are slightly more complex.
The basic operations of BST mainly rely on the "left smaller, right larger" property, which allows us to perform binary search-like operations in a binary tree, making it very efficient to find an element. For example, the following is a valid binary search tree:
For BST-related problems, you might often see code logic similar to the following:
void BST(TreeNode root, int target) {
if (root.val == target)
// found the target, do something
if (root.val < target)
BST(root.right, target);
if (root.val > target)
BST(root.left, target);
}
void BST(TreeNode* root, int target) {
if (root->val == target)
// found the target, do something
if (root->val < target)
BST(root->right, target);
if (root->val > target)
BST(root->left, target);
}
def BST(root: TreeNode, target: int) -> None:
if root.val == target:
# target found, do something
if root.val < target:
BST(root.right, target)
if root.val > target:
BST(root.left, target)
func BST(root *TreeNode, target int) {
if root.Val == target {
// found the target, do something
}
if root.Val < target {
BST(root.Right, target)
}
if root.Val > target {
BST(root.Left, target)
}
}
var BST = function(root, target) {
if (root.val === target) {
// found the target, do something
}
if (root.val < target) {
BST(root.right, target);
}
if (root.val > target) {
BST(root.left, target);
}
};
The framework of this code is quite similar to that of binary tree traversal, except it utilizes the characteristic of BST where the left node is smaller and the right node is larger. Next, let's see how the basic operations of this BST structure are implemented.
1. Validating the Legitimacy of a BST
LeetCode Problem 98 "Validate Binary Search Tree" requires you to determine if the given BST is valid:
98. Validate Binary Search Tree | 力扣 | LeetCode |
Given the root
of a binary tree, determine if it is a valid binary search tree (BST).
A valid BST is defined as follows:
- The left subtree of a node contains only nodes with keys less than the node's key.
- The right subtree of a node contains only nodes with keys greater than the node's key.
- Both the left and right subtrees must also be binary search trees.
Example 1:
Input: root = [2,1,3] Output: true
Example 2:
Input: root = [5,1,4,null,null,3,6] Output: false Explanation: The root node's value is 5 but its right child's value is 4.
Constraints:
- The number of nodes in the tree is in the range
[1, 104]
. -231 <= Node.val <= 231 - 1
Note, there is a pitfall here. According to the characteristic of BST where the left node is smaller and the right node is larger, to determine if a node is a valid BST node, wouldn't it just compare itself with its left and right children? It seems like you should write the code like this:
boolean isValidBST(TreeNode root) {
if (root == null) return true;
// the left side of the root should be smaller
if (root.left != null && root.left.val >= root.val)
return false;
// the right side of the root should be larger
if (root.right != null && root.right.val <= root.val)
return false;
return isValidBST(root.left)
&& isValidBST(root.right);
}
bool isValidBST(TreeNode* root) {
if (root == nullptr) return true;
// the left side of root should be smaller
if (root->left != nullptr && root->left->val >= root->val)
return false;
// the right side of root should be bigger
if (root->right != nullptr && root->right->val <= root->val)
return false;
return isValidBST(root->left)
&& isValidBST(root->right);
}
def isValidBST(root: TreeNode) -> bool:
if root is None:
return True
# the left of root should be smaller
if root.left is not None and root.left.val >= root.val:
return False
# the right of root should be larger
if root.right is not None and root.right.val <= root.val:
return False
return isValidBST(root.left) and isValidBST(root.right)
func isValidBST(root *TreeNode) bool {
if root == nil {
return true
}
// the left side of root should be smaller
if root.Left != nil && root.Left.Val >= root.Val {
return false
}
// the right side of root should be larger
if root.Right != nil && root.Right.Val <= root.Val {
return false
}
return isValidBST(root.Left)
&& isValidBST(root.Right)
}
var isValidBST = function(root) {
if (root === null) return true;
// the left side of the root should be smaller
if (root.left !== null && root.left.val >= root.val)
return false;
// the right side of the root should be larger
if (root.right !== null && root.right.val <= root.val)
return false;
return isValidBST(root.left)
&& isValidBST(root.right);
}
However, there is an error in this algorithm. Each node in a BST should be smaller than all the nodes in its right subtree. The following binary tree is clearly not a BST because there is a node 6 in the right subtree of node 10, but our algorithm incorrectly identifies it as a valid BST:
The error lies in the fact that for each node root
, the code only checks whether its left and right children follow the rule of left being smaller and right being larger. However, according to the definition of a BST, the entire left subtree of root
must be smaller than root.val
, and the entire right subtree must be larger than root.val
.
The problem is, for a given node root
, it can only directly control its immediate left and right children. How can we ensure that the constraint of root
is passed down to its left and right subtrees? Here is the correct code:
class Solution {
public boolean isValidBST(TreeNode root) {
return _isValidBST(root, null, null);
}
// Definition: This function returns whether all nodes in the subtree rooted at 'root' satisfy max.val > root.val > min.val
public boolean _isValidBST(TreeNode root, TreeNode min, TreeNode max) {
// base case
if (root == null) return true;
// If root.val does not satisfy the max and min constraints, it is not a valid BST
if (min != null && root.val <= min.val) return false;
if (max != null && root.val >= max.val) return false;
// According to the definition, the maximum value for the left subtree is root.val, and the minimum value for the right subtree is root.val
return _isValidBST(root.left, min, root)
&& _isValidBST(root.right, root, max);
}
}
class Solution {
public:
bool isValidBST(TreeNode* root) {
return _isValidBST(root, nullptr, nullptr);
}
// Definition: This function returns whether all nodes in the subtree rooted at root satisfy max->val > root->val > min->val
bool _isValidBST(TreeNode* root, TreeNode* min, TreeNode* max) {
// base case
if (root == nullptr) return true;
// If root->val does not satisfy the constraints of max and min, it is not a valid BST
if (min != nullptr && root->val <= min->val) return false;
if (max != nullptr && root->val >= max->val) return false;
// According to the definition, the maximum value of the left subtree is root->val and the minimum value of the right subtree is root->val
return _isValidBST(root->left, min, root)
&& _isValidBST(root->right, root, max);
}
};
class Solution:
def isValidBST(self, root: TreeNode) -> bool:
return self._isValidBST(root, None, None)
# Definition: This function returns whether all nodes in the subtree rooted at `root` satisfy max.val > root.val > min.val
def _isValidBST(self, root: TreeNode, min: TreeNode, max: TreeNode) -> bool:
# base case
if root is None:
return True
# If root.val does not comply with the constraints of max and min, it is not a valid BST
if min is not None and root.val <= min.val:
return False
if max is not None and root.val >= max.val:
return False
# According to the definition, the maximum value of the left subtree is root.val, and the minimum value of the right subtree is root.val
return self._isValidBST(root.left, min, root) and self._isValidBST(root.right, root, max)
func isValidBST(root *TreeNode) bool {
return _isValidBST(root, nil, nil)
}
// Definition: This function returns whether all nodes of the subtree rooted at root satisfy max.Val > root.Val > min.Val
func _isValidBST(root *TreeNode, min, max *TreeNode) bool {
// base case
if root == nil {
return true
}
// If root.Val does not meet the constraints of max and min, it is not a valid BST
if min != nil && root.Val <= min.Val {
return false
}
if max != nil && root.Val >= max.Val {
return false
}
// By definition, limit the maximum value of the left subtree to root.Val and the minimum value of the right subtree to root.Val
return _isValidBST(root.Left, min, root) && _isValidBST(root.Right, root, max)
}
var isValidBST = function(root) {
return _isValidBST(root, null, null);
};
// Definition: This function returns whether all nodes in the subtree rooted at 'root' satisfy max.val > root.val > min.val
var _isValidBST = function(root, min, max) {
// base case
if (root === null) return true;
// If root.val does not meet the constraints of max and min, it is not a valid BST
if (min !== null && root.val <= min.val) return false;
if (max !== null && root.val >= max.val) return false;
// According to the definition, the maximum value of the left subtree is root.val, and the minimum value of the right subtree is root.val
return _isValidBST(root.left, min, root)
&& _isValidBST(root.right, root, max);
};
By using helper functions and expanding the function parameter list to carry extra information, we can pass constraints to all nodes of the subtree. This is a small technique in binary tree algorithms.
Searching for Elements in a BST
LeetCode Problem 700 "Search in a Binary Search Tree" requires you to search for a node with the value target
in a BST. The function signature is as follows:
TreeNode searchBST(TreeNode root, int target);
TreeNode* searchBST(TreeNode* root, int target);
def searchBST(root: TreeNode, target: int) -> TreeNode:
func searchBST(root *TreeNode, target int) *TreeNode {
// Implementation goes here
}
var searchBST = function(root, target) {}
If you are searching in a regular binary tree, you can write the code like this:
TreeNode searchBST(TreeNode root, int target) {
if (root == null) return null;
if (root.val == target) return root;
// if the current node is not found, recursively search the left and right subtrees
TreeNode left = searchBST(root.left, target);
TreeNode right = searchBST(root.right, target);
return left != null ? left : right;
}
TreeNode* searchBST(TreeNode* root, int target) {
if (root == nullptr) return nullptr;
if (root->val == target) return root;
// if the current node is not found, recursively search the left and right subtrees
TreeNode* left = searchBST(root->left, target);
TreeNode* right = searchBST(root->right, target);
return left != nullptr ? left : right;
}
def searchBST(root, target):
if not root:
return None
if root.val == target:
return root
# if the current node is not found, recursively search the left and right subtrees
left = searchBST(root.left, target)
right = searchBST(root.right, target)
return left if left else right
func searchBST(root *TreeNode, target int) *TreeNode {
if root == nil {
return nil
}
if root.val == target {
return root
}
// recursively search left and right subtrees
left := searchBST(root.left, target)
right := searchBST(root.right, target)
// if the target node is found in the left subtree, return the left subtree; otherwise, return the right subtree
if left != nil {
return left
}
return right
}
var searchBST = function(root, target) {
if (root == null) return null;
if (root.val == target) return root;
// if the current node is not found, recursively search the left and right subtrees
let left = searchBST(root.left, target);
let right = searchBST(root.right, target);
return left != null ? left : right;
};
Writing it this way is completely correct, but this code essentially exhausts all nodes and is suitable for all binary trees. So how can we make full use of the special properties of a BST and take advantage of the "left smaller, right larger" characteristic?
It's simple. In fact, you don't need to search both sides recursively. Similar to the binary search concept, you can eliminate one side based on the comparison between target
and root.val
. Let's slightly modify the above approach:
TreeNode searchBST(TreeNode root, int target) {
if (root == null) {
return null;
}
// search in the left subtree
if (root.val > target) {
return searchBST(root.left, target);
}
// search in the right subtree
if (root.val < target) {
return searchBST(root.right, target);
}
// the current node is the target value
return root;
}
TreeNode* searchBST(TreeNode* root, int target) {
if (root == nullptr) {
return nullptr;
}
// search in the left subtree
if (root->val > target) {
return searchBST(root->left, target);
}
// search in the right subtree
if (root->val < target) {
return searchBST(root->right, target);
}
// the current node is the target value
return root;
}
def searchBST(root: TreeNode, target: int) -> TreeNode:
# if the binary tree is empty, return directly
if not root:
return None
# search in the left subtree
if root.val > target:
return searchBST(root.left, target)
# search in the right subtree
if root.val < target:
return searchBST(root.right, target)
# the current node is the target value
return root
func searchBST(root *TreeNode, target int) *TreeNode {
// if the root node is nil, return nil
if root == nil {
return nil
}
// search in the left subtree
if root.val > target {
return searchBST(root.left, target)
}
// search in the right subtree
if root.val < target {
return searchBST(root.right, target)
}
// the current node is the target value
return root
}
var searchBST = function(root,target) {
if (root === null) {
return null;
}
// search in the left subtree
if (root.val > target) {
return searchBST(root.left, target);
}
// search in the right subtree
if (root.val < target) {
return searchBST(root.right, target);
}
// target value equals the current node, return directly
return root;
}
Inserting a Number into a BST
Operations on data structures involve traversal and access. Traversal is "finding" and access is "modifying". For this specific problem, inserting a number means first finding the insertion position and then performing the insertion operation.
Since BSTs typically do not have duplicate values, we generally do not insert existing values into a BST. The following code assumes that no duplicate values will be inserted into the BST.
In the previous problem, we summarized the traversal framework for BSTs, which is the "finding" part. We can directly use this framework and add the "modifying" operation.
Once modification is involved, it becomes similar to constructing a binary tree. The function should return a TreeNode
type and should handle the return values of the recursive calls.
LeetCode problem 701 "Insert into a Binary Search Tree" is exactly this problem:
701. Insert into a Binary Search Tree | 力扣 | LeetCode |
You are given the root
node of a binary search tree (BST) and a value
to insert into the tree. Return the root node of the BST after the insertion. It is guaranteed that the new value does not exist in the original BST.
Notice that there may exist multiple valid ways for the insertion, as long as the tree remains a BST after insertion. You can return any of them.
Example 1:
Input: root = [4,2,7,1,3], val = 5 Output: [4,2,7,1,3,5] Explanation: Another accepted tree is:
Example 2:
Input: root = [40,20,60,10,30,50,70], val = 25 Output: [40,20,60,10,30,50,70,null,null,25]
Example 3:
Input: root = [4,2,7,1,3,null,null,null,null,null,null], val = 5 Output: [4,2,7,1,3,5]
Constraints:
- The number of nodes in the tree will be in the range
[0, 104]
. -108 <= Node.val <= 108
- All the values
Node.val
are unique. -108 <= val <= 108
- It's guaranteed that
val
does not exist in the original BST.
Let's look at the solution code directly. You can understand it better with the help of comments and the visualization panel:
class Solution {
public TreeNode insertIntoBST(TreeNode root, int val) {
if (root == null) {
// find an empty spot to insert the new node
return new TreeNode(val);
}
// go to the right subtree to find the insertion spot
if (root.val < val) {
root.right = insertIntoBST(root.right, val);
}
// go to the left subtree to find the insertion spot
if (root.val > val) {
root.left = insertIntoBST(root.left, val);
}
// return root, the upper level recursion will receive this as the child node
return root;
}
}
class Solution {
public:
TreeNode* insertIntoBST(TreeNode* root, int val) {
if (root == nullptr) {
// find the empty position to insert the new node
return new TreeNode(val);
}
// look for the insertion position in the right subtree
if (root->val < val) {
root->right = insertIntoBST(root->right, val);
}
// look for the insertion position in the left subtree
if (root->val > val) {
root->left = insertIntoBST(root->left, val);
}
// return root, the upper recursion will take the return value as a child node
return root;
}
};
class Solution:
def insertIntoBST(self, root: TreeNode, val: int) -> TreeNode:
if not root:
# find an empty spot to insert the new node
return TreeNode(val)
# go to the right subtree to find the insertion position
if root.val < val:
root.right = self.insertIntoBST(root.right, val)
# go to the left subtree to find the insertion position
if root.val > val:
root.left = self.insertIntoBST(root.left, val)
# return root, the upper level of recursion will receive the return value as a child node
return root
func insertIntoBST(root *TreeNode, val int) *TreeNode {
if root == nil {
// find the empty position to insert the new node
return &TreeNode{Val: val}
}
// find the position to insert in the right subtree
if root.Val < val {
root.Right = insertIntoBST(root.Right, val)
}
// find the position to insert in the left subtree
if root.Val > val {
root.Left = insertIntoBST(root.Left, val)
}
// return root, the upper recursion will receive the return value as a child node
return root
}
var insertIntoBST = function(root, val) {
if (root === null) {
// find the empty spot to insert the new node
return new TreeNode(val);
}
// find the insertion spot in the right subtree
if (root.val < val) {
root.right = insertIntoBST(root.right, val);
}
// find the insertion spot in the left subtree
if (root.val > val) {
root.left = insertIntoBST(root.left, val);
}
// return root, the upper recursion will receive the return value as a child node
return root;
}
3. Deleting a Node in a BST
LeetCode Problem 450 "Delete Node in a BST" requires you to delete a node with a value of key
in a Binary Search Tree (BST):
450. Delete Node in a BST | 力扣 | LeetCode |
Given a root node reference of a BST and a key, delete the node with the given key in the BST. Return the root node reference (possibly updated) of the BST.
Basically, the deletion can be divided into two stages:
- Search for a node to remove.
- If the node is found, delete the node.
Example 1:
Input: root = [5,3,6,2,4,null,7], key = 3 Output: [5,4,6,2,null,null,7] Explanation: Given key to delete is 3. So we find the node with value 3 and delete it. One valid answer is [5,4,6,2,null,null,7], shown in the above BST. Please notice that another valid answer is [5,2,6,null,4,null,7] and it's also accepted.
Example 2:
Input: root = [5,3,6,2,4,null,7], key = 0 Output: [5,3,6,2,4,null,7] Explanation: The tree does not contain a node with value = 0.
Example 3:
Input: root = [], key = 0 Output: []
Constraints:
- The number of nodes in the tree is in the range
[0, 104]
. -105 <= Node.val <= 105
- Each node has a unique value.
root
is a valid binary search tree.-105 <= key <= 105
Follow up: Could you solve it with time complexity O(height of tree)
?
This problem is a bit more complex. Similar to the insert operation, you first "find" and then "modify." Let's outline the framework first:
TreeNode deleteNode(TreeNode root, int key) {
if (root.val == key) {
// found it, proceed to delete
} else if (root.val > key) {
// go to the left subtree
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
// go to the right subtree
root.right = deleteNode(root.right, key);
}
return root;
}
TreeNode* deleteNode(TreeNode* root, int key) {
if (root->val == key) {
// found it, proceed to delete
} else if (root->val > key) {
// go to the left subtree
root->left = deleteNode(root->left, key);
} else if (root->val < key) {
// go to the right subtree
root->right = deleteNode(root->right, key);
}
return root;
}
def deleteNode(root: TreeNode, key: int) -> TreeNode:
if root.val == key:
# Found it, proceed with deletion
elif root.val > key:
# Search in the left subtree
root.left = deleteNode(root.left, key)
elif root.val < key:
# Search in the right subtree
root.right = deleteNode(root.right, key)
return root
func deleteNode(root *TreeNode, key int) *TreeNode {
if root.Val == key {
// found it, proceed to delete
} else if root.Val > key {
// look in the left subtree
root.Left = deleteNode(root.Left, key)
} else if root.Val < key {
// look in the right subtree
root.Right = deleteNode(root.Right, key)
}
return root
}
var deleteNode = function(root, key) {
if (root.val === key) {
// Found it, proceed with deletion
} else if (root.val > key) {
// Go to the left subtree to search
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
// Go to the right subtree to search
root.right = deleteNode(root.right, key);
}
return root;
}
Once the target node is found, say node A
, the challenge is how to remove this node without disrupting the properties of the BST (Binary Search Tree). There are three scenarios, explained with diagrams.
Scenario 1: A
is a leaf node with both child nodes being null. In this case, it can be removed directly.
if (root.left == null && root.right == null)
return null;
Case 2: If A
has only one non-empty child node, then it should let this child take its place.
// After excluding case 1
if (root.left == null) return root.right;
if (root.right == null) return root.left;
Case 3: A
has two child nodes. This is tricky. To maintain the properties of the BST, A
must be replaced by either the largest node in its left subtree or the smallest node in its right subtree. We will explain using the second approach.
if (root.left != null && root.right != null) {
// find the minimum node in the right subtree
TreeNode minNode = getMin(root.right);
// replace root with minNode
root.val = minNode.val;
// then delete the minNode
root.right = deleteNode(root.right, minNode.val);
}
After analyzing the three cases, fill in the framework and simplify the code:
class Solution {
public TreeNode deleteNode(TreeNode root, int key) {
if (root == null) return null;
if (root.val == key) {
// these two if statements correctly handle cases 1 and 2
if (root.left == null) return root.right;
if (root.right == null) return root.left;
// handle case 3
// get the smallest node in the right subtree
TreeNode minNode = getMin(root.right);
// delete the smallest node in the right subtree
root.right = deleteNode(root.right, minNode.val);
// replace the root node with the smallest node in the right subtree
minNode.left = root.left;
minNode.right = root.right;
root = minNode;
} else if (root.val > key) {
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
root.right = deleteNode(root.right, key);
}
return root;
}
TreeNode getMin(TreeNode node) {
// the leftmost node in a BST is the smallest
while (node.left != null) node = node.left;
return node;
}
}
class Solution {
public:
TreeNode* deleteNode(TreeNode* root, int key) {
if (root == nullptr) return nullptr;
if (root->val == key) {
// these two if statements correctly handle cases 1 and 2
if (root->left == nullptr) return root->right;
if (root->right == nullptr) return root->left;
// handle case 3
// get the smallest node in the right subtree
TreeNode* minNode = getMin(root->right);
// delete the smallest node in the right subtree
root->right = deleteNode(root->right, minNode->val);
// replace the root node with the smallest node in the right subtree
minNode->left = root->left;
minNode->right = root->right;
root = minNode;
} else if (root->val > key) {
root->left = deleteNode(root->left, key);
} else if (root->val < key) {
root->right = deleteNode(root->right, key);
}
return root;
}
TreeNode* getMin(TreeNode* node) {
// in a BST, the leftmost node is the smallest
while (node->left != nullptr) node = node->left;
return node;
}
};
class Solution:
def deleteNode(self, root: TreeNode, key: int) -> TreeNode:
if root == None:
return None
if root.val == key:
# These two if statements correctly handle cases 1 and 2
if root.left == None:
return root.right
if root.right == None:
return root.left
# handle case 3
# get the smallest node in the right subtree
minNode = self.getMin(root.right)
# delete the smallest node in the right subtree
root.right = self.deleteNode(root.right, minNode.val)
# replace the root node with the smallest node in the right subtree
minNode.left = root.left
minNode.right = root.right
root = minNode
elif root.val > key:
root.left = self.deleteNode(root.left, key)
elif root.val < key:
root.right = self.deleteNode(root.right, key)
return root
def getMin(self, node: TreeNode) -> TreeNode:
# The leftmost node in a BST is the smallest
while node.left != None:
node = node.left
return node
// delete a node in a binary search tree
func deleteNode(root *TreeNode, key int) *TreeNode {
if root == nil {
return nil
}
if root.Val == key {
// these two if statements correctly handle cases 1 and 2
if root.Left == nil {
return root.Right
}
if root.Right == nil {
return root.Left
}
// handle case 3
// get the smallest node in the right subtree
minNode := getMin(root.Right)
// delete the smallest node in the right subtree
root.Right = deleteNode(root.Right, minNode.Val)
// replace the root node with the smallest node in the right subtree
minNode.Left = root.Left
minNode.Right = root.Right
root = minNode
} else if root.Val > key {
root.Left = deleteNode(root.Left, key)
} else if root.Val < key {
root.Right = deleteNode(root.Right, key)
}
return root
}
// get the smallest node in the binary search tree
func getMin(node *TreeNode) *TreeNode {
// the leftmost node in a BST is the smallest
for node.Left != nil {
node = node.Left
}
return node
}
var deleteNode = function(root, key) {
if (root == null) return null;
if (root.val == key) {
// These two if-statements handle cases 1 and 2 correctly
if (root.left == null) return root.right;
if (root.right == null) return root.left;
// handle case 3
// get the smallest node in the right subtree
let minNode = getMin(root.right);
// delete the smallest node in the right subtree
root.right = deleteNode(root.right, minNode.val);
// replace the root node with the smallest node in the right subtree
minNode.left = root.left;
minNode.right = root.right;
root = minNode;
} else if (root.val > key) {
root.left = deleteNode(root.left, key);
} else if (root.val < key) {
root.right = deleteNode(root.right, key);
}
return root;
}
// get the smallest node in the BST.
var getMin = function(node) {
// the leftmost node in the BST is the smallest
while (node.left != null) node = node.left;
return node;
}
With this, the deletion operation is complete. Note that in the above code, situation 3 is handled by a series of slightly complex linked list operations that swap the root
and minNode
nodes:
// handle case 3
// get the minimum node of the right subtree
TreeNode minNode = getMin(root.right);
// delete the minimum node of the right subtree
root.right = deleteNode(root.right, minNode.val);
// replace the root node with the minimum node of the right subtree
minNode.left = root.left;
minNode.right = root.right;
root = minNode;
Some readers might wonder why replacing the root
node is so troublesome. Wouldn't it be simpler to just change the val
field? It seems more straightforward and easier to understand:
// handle case 3
// get the minimum node of the right subtree
TreeNode minNode = getMin(root.right);
// delete the minimum node of the right subtree
root.right = deleteNode(root.right, minNode.val);
// replace the root node with the minimum node of the right subtree
root.val = minNode.val;
For this specific algorithm problem, it is possible, but this operation is not perfect. We generally do not swap nodes by modifying the values inside the nodes. In practical applications, the data field inside a BST node is user-defined and can be very complex. As a data structure (a utility), the BST's operations should be decoupled from the data stored inside. Therefore, we prefer using pointer operations to swap nodes without concerning ourselves with the internal data.
To summarize briefly, through this article, we have outlined the following tips:
If the current node has an overall impact on the child nodes below, you can use auxiliary functions to extend the parameter list and pass information through parameters.
Master the methods for adding, deleting, searching, and updating in a BST.
When recursively modifying a data structure, you need to receive the return value of the recursive call and return the modified node.
That's it for this article. For more classic binary tree exercises and training in recursive thinking, please refer to the Special Practice on Recursion in the binary tree section.